Изучение структуры монокристаллов NaCl с различной ориентацией

Общая информация

Описание

Экспериментальная установка

Большинство применений рентгеновских лучей основано на их способности проходить сквозь вещество. Поскольку эта способность зависит от плотности вещества, становится возможным получение изображений внутренних частей объектов и даже людей. Это находит широкое применение в таких областях, как медицина или безопасность.

Дополнительная информация (1/2)

Предварительные

знания

Предварительные знания, необходимые для этого эксперимента, приведены в разделе "Теория".

Анализируются спектры рентгеновских лучей, отраженных монокристаллами NaCl с различной ориентацией. Соответствующие межплоскостные расстояния определяются на основе углов Брэгга характеристических линий.

Этот эксперимент включен в "XRS 4.0 Рентгеноструктурный анализ".

Дополнительная информация (2/2)

Обучение

цель

Цель этого эксперимента - изучить структуру кристаллов NaCl в различных ориентациях.

- 1. Определите интенсивность рентгеновского излучения, отраженного монокристаллами NaCl с ориентациями [100], [110] и [111] в зависимости от угла Брэгга.

Задачи

2. Присвойте отражения соответствующим плоскостям решетки, которые задаются через соответствующие индексы Миллера.

3. Определите постоянную решетки и вычислите межплоскостное расстояние.

4. Определите массу ячейки кристалла и количество атомов в ней.

Теория (1/5)

Если рентгеновские лучи попадают в семейство параллельных плоскостей решетки с межплоскостным расстоянием d под углом скольжения θ , излучение будет отражаться конструктивным образом при условии, что выполняется так называемое условие Брэгга (1) (см. рис. 1).

 $2d\sin(\theta) = n\lambda$ (1)

(d: межплоскостное расстояние; n = 1, 2, 3, ...)

При анализе кристаллической структуры n часто включается в расстояние между плоскостями решетки.

 $2d\sin(\theta) = \lambda$ (1b)

Рис. 1: Брэгговское рассеяние на паре плоскостей решетки

Теория (2/5)

Отражения n-го порядка непосредственно связаны с дифракцией на различных плоскостях. Индексы Миллера - это метод наименования различных плоскостей в кристалле. В основном они указывают точки пересечения воображаемого сечения трехмерной элементарной ячейки кристалла. Симметричной фундаментальной единицей кристалла является элементарная ячейка. В кубической кристаллической решетке, как и в случае *NaCl*, все стороны этой ячейки имеют одинаковую длину. Длина стороны такой ячейки называется постоянной решетки *a*.

Теория (3/5)

PHYWE excellence in science

Как показано на рисунках 2а - 2с, монокристаллы NaCl имеют гранецентрированную кубическую решетку (ГЦК). В элементарной ячейке ион Na+ имеет координаты (0,0,0), а ион Cl- имеет координаты $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$.

Рис. 2а: Кристалл NaCl с втянутыми (100) плоскостями решетки

Рис. 2б: Кристалл NaCl с втянутой (110) плоскостью решетки

Рис. 2с: Кристалл NaCl с втянутыми плоскостями решетки (111) и (222).

Теория (4/5)

Для кубического кристалла с постоянной решетки *а* плоскости решетки, характеризуемые индексами Миллера (*h*, *k*, *l*), имеют следующие межплоскостные расстояния *d*:

$$\mathrm{d}=rac{\mathrm{a}}{\sqrt{\mathrm{h}^2+\mathrm{k}^2+\mathrm{l}^2}}$$
(2)

Подстановка (2) в (1b) приводит к следующему соотношению:

 $\sin(heta_{
m hkl})=\sqrt{{
m h}^2+{
m k}^2+{
m l}^2}\cdotrac{\lambda}{2{
m a}}$ (2b)

Теория (5/5)

PHYWE excellence in science

Относительная интенсивность отраженного излучения определяется рассеивающей способностью и положением отдельных атомов в элементарной ячейке кристалла. Она описывается так называемым структурным фактором F(h,k,l):

 $\mathrm{F}(\mathrm{h},\mathrm{k},\mathrm{l}) = \sum_{\mathrm{n}} \mathrm{f}_{\mathrm{n}} \cdot \exp[-2\pi i (\mathrm{hu}_{\mathrm{n}} + \mathrm{kv}_{\mathrm{n}} + \mathrm{lw}_{\mathrm{n}})]$ (3)

В этом уравнении (3), f_n = атомный форм-фактор (атомный фактор рассеяния), и u_n , v_n and w_n = координаты n-го атома в элементарной ячейке. Полная интенсивность обратно рассеянного луча I составляет: $I = F \cdot F = |F(h, k, l)|^2$ (4)

При 000; 011; 101 и 110 базисных атомов в элементарной ячейке ГЦК-кристалла, из (3) следует, что F = 0, когда триплет h, k, l содержит четные и нечетные числа, и F = 4f, когда все индексы либо четные, либо нечетные. Кроме того, в гранецентрированных кубических кристаллических структурах и в случае плоскостей решетки 100 и 110 отражения плоскостей с нечетными значениями h, k и l устраняются путем систематического поглощения.

info@phywe.de

www.phywe.de

Оборудование

Позиция	Материал	Пункт No.	Количество
1	XR 4.0 X-ray Базовая рентгеновская установка, 35 кВ	09057-99	1
2	XR 4.0 X-ray Гониометр для рентгеновской установки, 35 кВ	09057-10	1
3	XR4 Съёмная рентгеновская трубка Plug-in Cu tube	09057-51	1
4	XR 4.0 Рентгеноструктурный анализ, расширение	09145-88	1

Подготовка и выполнение работы

Подготовка

Подключите гониометр и счетчик Гейгера-Мюллера к соответствующим гнездам в экспериментальной камере (см. красная маркировка на рис. 3). Блок гониометра с кристаллом анализатора должен располагаться в крайнем положении с правой стороны. Закрепите трубку счетчика Гейгера-Мюллера с держателем на заднем упоре направляющих. Не забудьте установить перед счетчиком диафрагму (см. рис. 4). Вставьте диафрагменную трубку диаметром 2 мм в выходное отверстие блока подключения трубки.

Для калибровки: Убедитесь, что в параметры гониометра введен правильный кристалл. Затем выберите "Меню", "Гониометр", "Автокалибровка". Теперь прибор определит оптимальные положения кристалла и гониометра относительно друг друга, а затем и положения пиков.

www.phywe.de

Выполнение работы

- Подключите рентгеновскую установку через USB-кабель к USB-порту компьютера (нужный порт рентгеновской установки отмечен на рисунке 5).
- Запустите программу measure. На экране появится виртуальная рентгеновская установка.
- Вы можете управлять рентгеновской установкой, нажимая на различные функции на виртуальной рентгеновской установке и под ней. Кроме того, Вы можете изменить параметры на самой рентгеновской установке. Программа автоматически примет настройки.

Выполнение работы

интерфейса программного обеспечения

- Нажмите на экспериментальную камеру (см. красную маркировку на рисунке 6), чтобы изменить напряжение и ток рентгеновской трубки. Выберите параметры, как показано на рис. 7.
- Выберите следующие параметры: напряжение анода $U_{\rm A}=35\,{
 m \kappa}{
 m B}$; анодный ток $I_A = 1$ мA
- Установите один из кристаллов в универсальный держатель кристаллов и закрепите его на гониометре (рис. 4).

Рис. 7: Настройки гониометра, кристалл NaCl (100)

DHYWE

excellence in science

Рис. 5: Подключение компьютера

10/14

Оценка

PHY WE Выполнение работы (3/3) excellence in science Experiment Hi Data processing × • Начните измерение, нажав на красный круг: Would you like to. • • • send all data to measure clear all values • После измерения появится следующее окно: C Keep current processed values OK Обзор настроек гониометра и рентгеновской установки: • Выберите первый пункт и • Режим сопряжения 1:2 подтвердите выбор нажатием кнопки ОК. Теперь измеренные • Время выхода 2 с; ширина углового шага 0,1° значения будут переданы непосредственно в программу • Диапазон сканирования 3° - 60° measure. $\circ~$ Анодное напряжение $U_{\rm A}$ = 35 кB; анодный ток $I_{\rm A}$ = 1 мA

Robert-Bosch-Breite 10

37079 Göttingen

PH' WE

excellence in science

Задание 1

Определите интенсивность рентгеновского излучения, отраженного монокристаллами NaCl с ориентациями [100], [110] и [111] в зависимости от угла Брэгга.

На рис. 8а - 8с показана интенсивность рентгеновского спектра меди в зависимости от угла θ .

Задание 1 (часть 2)

PHYWE excellence in science

По сравнению с другими спектрами, спектр кристалла [111] (рис. 8с) демонстрирует заметную особенность. В то время как в случае других спектров интенсивность характеристических линий всегда максимальна для отражений первого порядка (n = 1). На рис. 8с это наблюдается в случае и n = 2.

В кристалле [111] параллельные плоскости решетки заняты либо только ионами Na+, либо только ионами Cl-. Поскольку эти два иона имеют разные факторы рассеяния, интенсивности также отличаются друг от друга. Если f_{Na} и f_{Cl} являются факторами рассеяния, из (3) вытекает следующее для плоскостей решетки с исключительно нечетными или исключительно четными (h, k, l) индексами:

$$F=4(f_{Na}+f_{Cl})$$
 и $I\propto F^2=16(f_{Na}+f_{Cl})^2$

Задание 2

PHYWE excellence in science

Присвоение индексов Миллера

В таблице 1 углы скольжения θ , определенные с помощью рисунков 8а -8с, соотнесены с их соответствующими индексами Миллера Исходя из (3), мы знаем, что для плоскостей решетки 100 и 110 возможны только четные или только нечетные значения для триплета h, k, l и что для нечетных значений h, k и l на 100 и 110 отражений фактически нет. Эти соображения привели к распределениям, показанным в таблице 1.

Таблица 1	$ heta(\mathrm{K}_{lpha})$	$ heta(\mathrm{K}_eta)$	(h, k, l)	$\mathbf{h}^2 + \mathbf{k}^2 + \mathbf{l}^2$
(100) кристалл				
	15.9	14.3	200	4
	33.2	29.7	400	16
	55.1	47.9	600	36
(110) кристалл				
	22.3	20.1	220	8
	50.2	43.9	440	32
(111) кристалл				
	13.5	12.1	111	3
	28.1	25.1	222	12
	45.0	29.7	333	27
		58.5	444	48

Задание З

Определите постоянную решетки и вычислите межплоскостное расстояние.

Если решить уравнение (2b) для a, то можно получить постоянную решетки a для различных отражений на основе триплетов hkl, которые были определены в задании 1, а также на основе угла скольжения θ и длины волны характеристического рентгеновского излучения меди ($\lambda_{K_{\alpha}} = 154,4$ пм; ($\lambda_{K_{\beta}} = 139,2$ пм). В таблице 2 приведены соответствующие значения. Сравнение среднего значения с табличным значением a = 564 пм показывает хорошее соответствие. Уравнение (2) теперь может быть использовано для вычисления межплоскостного расстояния для первой плоскости, поскольку постоянная решетки a относится к элементарной ячейке, имеющей всего две плоскости. При таком значении и в соответствии с уравнением (1) расстояния между отдельными плоскостями решетки следующие: d(200) = 282,0 пм, d(220) = 201,9 пм и d(111) = 330,2 пм.

Табличные значения: d(200) = 282.0 пм, d(220) = 199.4 пм, и d(111) = 325.6 пм.

Очень хорошее согласие между значением расстояния между плоскостями решетки (100), определенным экспериментально, и табличным значением объясняется тем, что ионные кристаллы могут быть расщеплены очень точно параллельно этой плоскости. Отклонения других кристаллов обусловлены незначительной разориентацией.

PHYWE excellence in science

Задание 3 (часть 2)

Таблица 2	$ heta$ [°] (h,k,l) $h^2+k^2+l^2$ a			а [пм]	
(100) кристалл					
K_{lpha}	15.9	200	4	567	
	33.2	400	16	564	
	55.1	600	36	565	
${ m K}_eta$	14.3	200	4	564	
	29.7	400	16	562	
	47.9	600	36	563	
			Среднее значение	564	

Таблица 2	θ [°] (h, k, l) $h^2 + k^2 + l^2$			а [пм]
(110) кристалл				
K_{lpha}	22.3	220	8	575
	50.2	440	32	568
\mathbf{K}_{eta}	20.1	220	8	573
	43.9	440	32	568
	_		Среднее значение	571

Задание 3 (часть 3)

Таблица 2	$ heta$ [°] $(\mathrm{h},\mathrm{k},\mathrm{l})~\mathrm{h}^2+\mathrm{k}^2+\mathrm{l}^2$ a			а [пм]
(100) кристал	іл			
K_{lpha}	13.5	111	3	573
	28.1	222	12	586
	45.0	333	27	567
K_eta	12.1	111	2	575
	25.1	222	12	568
	39.7	333	27	566
	58.5	444	48	566
			Среднее значение	572

Задание 4

Определите массу элементарной ячейки и число атомов в ней.

Если рассчитать объем элементарной ячейки хлорида натрия

$$\mathrm{a} = 1.79 \cdot 10^{-28} \, \mathrm{m}^3$$

и зная плотность хлорида натрия ho=2.163г/см 3 , можно вычислить массу элементарной ячейки как:

 ${
m m}=
ho\cdot{
m V}=3.87\cdot10^{-25}\,{
m kr}=233\,{
m u}$

Поскольку число атомов Na в NaCl равно числу атомов Cl, молярные массы $M_{(Na)}$ = 22,990 г/моль и $M_{(Cl)}$ = 35,453 г/моль приводят к числу 3,99 = 4 атома в решетке Браве, чего также можно было ожидать и для ГЦК-решетки, исходя из следующих соображений (см. также рис.9):

DHIME Задание 4 (часть 2) excellence in science Каждая элементарная ячейка включает 4 катиона (зеленые): Каждый из катионов на 8 углах считается в элементарную ячейку только как $\frac{1}{8}$: 8 "угловых катионов" $\cdot \frac{1}{8} ightarrow 1$ катион Катионы на поверхностях считаются только как $\frac{1}{2}$: 6 "поверхностные катионы" $\cdot \frac{1}{2} \to 3$ катиона Рис. 9: Каждая элементарная ячейка включает 4 аниона (синие): Элементарная ячейка NaCl, Каждый из анионов на 12 краях считается в элементарную ячейку только как $rac{1}{4}$: 12 синий: атомы *Cl* "краевых анионов" $\cdot rac{1}{4} o 3$ аниона ; зеленый: атомы NaАнион в центре полностью принадлежит элементарной ячейке: 1 "анион в центре" ightarrow1 анион